AD=ADS2 058 KANSAS UNIV LAWRENCE DEPT OF ELECTRICAL ENGINEERING F/8 9/2
SCENE ANALYSIS» WNOHORPHISH- AND CONSISTENT LABELING PROBLEM A-ETC(U)
JAN 80 R M HARALICK, 6 ELLIO A OSR-'I'I-SBO
UNCLASSIFIFD AFOSR=TR=80-0142

"m |0 = e 2

32
12)

L EL]

S e
||l.!|% K
22 st e

¢

-

»
MICROCOPY RESOLUTION TEST CHART
NATUNAL BUREAU OF STANDARDS 1963

i

' Tgl
N SCENE ANALYSIS, HOMOMORPHISM, AND CONSISTENT C
v o) LABELING PROBLEM ALGORITHMS \\
: by
B LY
: << »
' Robert M. Haralick
f
312 s
SAEOSK-T7-3307
P January 1980
P2
O
<D
i S
Lt
- e ‘
£
y
o %
{ﬁ:. ' i
o {
’ } Tag *)) ‘ Approved for public releasey
' o A% v distribution unlimited. i

T wee g Y IO VRGN o = Mpwey

b4 [4
SECURITY cussmcncou‘o‘ :F!.E ia!é ﬁ.‘ glgﬁoh‘d)

19, RSPORT DOCUMENT4

READ INSTKUCTIONS
BEFORE COMPLETING FORM

2. GOVT ACCESSION NO|

3. RECIPIENT'S CATALOG NUMBER

Y TR

& - TUTLEfand Seubtitpop—er~ " -
SCENE ANALYSIS, HOMOMORPHISM, AND ,CONSISTENT_/

S,
_LABELING PROBLEM ALGORITHMS, r =

s o

TYPE OF REPORT & PERIOD COVERED

7. AUTHOR(s)

vI . ! o s
X Robert M./Haralick Govdon /,5/’/‘; ol
. L

&
[4

8. CONTRACT OR GRANT NUMBER(s)

v AFOSR 77-3307 M"

9. PERFORMING ORGANIZATION NAME AND ADDRESS
University of Kansas
Dept. of Electrical Engineering
Lawrence, KA 66045

T PROGHAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUNBERS

.\,7‘,

ve)
61102F | 23@4_24\;})‘

1. CONTROLLING OFFICE NAME AND ADDRESS

Alr Force Office of Scientific Research/NM _,,//
Bolling AFB, Washington, D. C. 20332

12

! JandiiiBE80

. NUMBER OF PAGES

85

14, MONITORING AGENCY NAME & ADORESS(if different from Controlling Oftice)

15. SECURITY CLASS. (of this report)

UNCLASSIFIED

g
LI

1Sa. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necesaary and identify by block number)
Scene Analysis
Region Interpretation
Computer Vision

\\Line Labeling

0.

Relation Homomorphism
Consistent Labeling

reverse side If necessary and ldentify by block number)

was explored in d
image matching. i

2 @ISTRACT (Continue on
n this research project the meaning of image matching in the symbolic sense

etail as well as the nature of the algorithms required to do
It was determined that image matchingvwas, in fact, a rela-
tional homomorphism problem and that relational homomorphism was a kind of con=-
straint satisfaction problem that 1is called consistent labeling.,

Consistent labeling problems are prevalent in image understanding work; for
example, line labeling, and region interpretation are consistent labeling prob-

-
-

lems. Having realized that the hard computational problems were consistent
DD /5% 7 1473 €oimion oF 1 NOV 6315 OBSOLETE UNCLASSIFIED ://Z) é <

- e

I SECURITY CLASSIFICATION OF THIS PAGE (When Date En!vrtd’:‘.

e

y/ * v

SECURITY CLASSIFICATIO HIS PAGE(When Dace
20. ‘Abstract cont,
-d

—9 labeling problems,

solving them. The results indica
fastest algorithm from all algori
ing problem. eguees——

our efforts were concentrated on

(ored)

-

efficient algoritims for
te that the forward checking algorithm ig th
thm tried for solving the consistent label-

UNCLASSIFIED

SECURITY CLASSIFICATION OF YHIS PAGE(When Dete Entered)

s

I SUMMARY

In this research project the meaning of image matching in the symbolic
sense was explored in detail as well as the nature of the algorithms required
to do image matching. It was determined that image matching was, in fact,

a relational homomorphism problem and that relational homomorphism was a
kind of constraint satisfaction problem that is called consistent labeling.

Consistent labeling problems are prevalent in image understanding work:
for example, line labeling, and region interpretation are comsistent labeling

probelms. Having realized that the hard computational problems were consistent

A, o At

labeling problems, our efforts were concentrated on efficient algorithms for
solving them.

Most of our work generalized the relaxation operators of Ullman and
Waltz and showed how what they produced related to either homomorphisms

or consistent labeling problems. After we finished these theoretical

generalizations, we began empirical studies measuring the improvement of
the relaxation algorithms over standard backtracking.

Although due to AFOSR administrative rules, the grant was not continued
at VPI after I left Kansas, we nevertheless continued our research and
discovered an algorithm that was not of the relaxation type and which gave
considerable improvement over them.

The beginning part of this report briefly describes the papers which

have been published as a result of this research. The main part of this

report describes the results of the research done at VPI.

Al L)
N : .

T I
i S -~ (i0)e
Dioes. .

A. Do lac. |

Techuicul 1.+ v -t Giilcer

F‘ <

t L N I e o VETOP RUCIPR UL P . . T ———_—
Ca e -
. - R S R N i .

ITI Papers Published

One important process in many artificial intelligence problems is that
of making empirical knowledge (coming from data) about the world consistent
with theoretical or model knowledge we have about the world. Constraint
relaxation techniques have been used with some success in this regard. 1In
a paper entitled "Scene Analysis, Arrangements, and Homomorphisms" presented
at the 1977 Workshop on Scene Analysis at Amherst, Massachusetts, and

subsequently published as a chapter in the book Machine Vision (Hanson and

Riseman, Ed., 1978), we illustrated how the constraint relaxation as applied
to scene analysis problems is really a technique for finding homomorphisms
from one arrangement (a set of labeled relations) to another. We showed
how a few common scene analysis problems are really problems in establishing
the relationship between one arrangement and another.

The idea of homomorphism between arrangements and a discrete relaxation
algorithm for finding them was discussed in detail in the paper "Arrangements,
Homomorphisms, and Discrete Relaxation” (with J. Karten) that appeared in the

August 1978 issue of the IEEE Transactions on Systems, Man, and Cvbernetics.

In a paper entitled "Structural Pattern Recognition, Arrangements,
and Theory of Covers" presented at the 1977 Pattern Recognition and Image
Processing Conference, we illustrated how the concept of arrangements can
be used in structural pattern recognition as an alternative to syntactic
techniques. This paper was substantially expanded, illustrating how syntactic
techniques depend on homomorphisms, and published in the June 1978 issue of

Pattern Recognition. The paper was entitled '"Structural Pattern Recognition,

Homomorphism, and Arrangements".

Because relational homomorphism seemed to be playing such a large

role in structural pattern recognition, we began to examine algorithms for
computing relational homomorphisms. This lead to posing a more general type
of constraint satisfaction problem and using more generali-ed discrete
relaxation to make the tree search be more efficient. A paper entitled
"Reduction Operations for Constraint Satisfaction" coauthored with Davis,
Rosenfeld, and Milgram was published in the April 1978 issue of Information
Sciences.

Further generalizing this basically combinatorial problem and the
operations to make the tree search more efficient, we began work on the
consistent labeling problem. A talk was presented at the 1978 Princeton
Workshop on Artificial Intelligence and Pattern Recognition and Image Processing.
The entire scope of this work was prepared with Shapiro as a two part paper
entitled "The Consistant Labeling Problem" part one of whick appeared in the

March 1979 issue of the IEEE Transactions on Pattern Analvsis and Machine

Intelligence and part two of which will appear in the May 1980 issue.

At VPI work continued on improving the efficiency of the algorithm for
determining consistent labelings. The paper "TIncreasimg Tree Search Efficiency
for Constraint Satisfaction Problems”" (with G. Elliott) presented at the 1979
International Joint Conference on Artificial Intelligence in Tokyo demonstrated
a new algorithm called "forward checking' whose performance surpasses that of

ix of this report

the earlier relaxation algorithms. The paper in the a

discusses the details of this algorithm.

4 e

List of Publications

"Scene Analysis, Arrangements, and Homomorphisms,' Workshop on Computer Vision
Systems, University of Massachusetts, June 1-3, 1977, (Invited)

"Structural Pactern Recognition, Arrangements, and Theory of Covers," IEEE

Conference on Pattern Recognition and Image Processing, Rensselaer

Polytechnic Institute, Troy, New York, June 6-8, 1977.

int Satisfaction Problems”

“Increasing Tree Search Efficiency for Comstra ‘
erence on Artificial Intelligence,

(with G. Elliott) Internacional Joint Conf
Tokyo, Japan, August 1979.

"The Characterization of Binarv Relation Homomorphisms,'" International Journal
General Svstems, Vel. 4, 1978, pp. 113-121.

"Reduction Operations for Constraint Satisfaction,” (with Larry S. Davis,
Azriel Rosenfeld, and David L. Milgram), Information Sciences, Vol. 14,
No. 3, April 1978.

"Scene Analysis, Arrangements, and Homomorphisms,'" Chapter coutributed to
Machine Vision, (Hanson and Riseman, Edi:ogs). Academic Press, New York,

1978. -)

"Structural Pattern Recognition, Homomorphisms, and Arrangements,' Pattern
Recognition, Vol. 10, No. 3, June 1978.

"Arrangements, Homomorphism§ and Discrete Relaxation,'" (with J. Kartus),
IEEE Transactions on Systems, Man, and Cvbernetics, Vol. SMC-8, No. 8,
August 1978, pp. 600-612.

"The Consistent Labeling Problem I," (with L. Shapiro), IEEE Transactions cn

Pattern dnalvsis and Machine Intelligence, Vol. 1, No. 2, March 1979,

pP.

T AT TN

o g

INCREASING TREE SEARCH EFFICIENCY
FOR

CONSTRAINT SATISFACTION PROBLEMS

by

Robert M. Haralick
. . and
Gordon Elliott '

Department of Electrical Engineering
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

TABLE OF CONTENTS

ABSTRACT & & & « & o s i
I. INTRODUCTION . . & ¢ & ¢ ¢ o o o o o « o o o s o s o o o 1
II., SOME PROCEDURES FOR TREE SEARCH « « « « « . . & 7
IT.1 LOOKING AHEAD . . . v ¢ ¢ ¢ ¢ o o o o o o o o o o o o o o 7
I1.2 PARTIAL LOOKING AHEAD v o ¢ ¢ ¢« ¢ o o o o o 9

II.3 FORWARD CHECKING . « « « v « ¢ v v o o o « o o o « v v« 10
II.4 BACKCHECKING + + &+ v v o o o o v o v o o e e e e v v v v 13
II.5 BACKMARKING « + « v o v o o o v o o o o o o o s e o v v o 13
III. EXPERIMENTAL RESULTS . + « = « « « o o ¢ o o o o o o « 21
IV. STATISTICAL MODEL FOR CONSTRAINT SATISFACTION SEARCHES . 47
V. THE FAIL FIRST PRINCIPLE . « + « + v « « o o « o v o « = 63
V.1 OPTIMIZING THE CONSISTENCY CHECK ORDER IN TREE SEARCHING. 63
V.2 OPTIMIZING TREE SEARCH ORDER + + « « « « « - - 68
VI. CONCLUSION « + v « ¢ o v v o o o v v s e et e e e e e e 75

APPENDIX A. COMPUTER PROGRAM LISTINGS « « . « . & 78

Sul i A i A d L e

T T LA

o

e

Gtiwt e -

ABSTRACT

In this paper we explore the number of tree search operations
required to solve binary constraint satisfaction problems. We show
analytically and experimentally that the two principles of first
trying the places most likely to fail and remembering what has been
done to avoid repeating the same mistake twice improve the standard
backtracking search. We experimentally show that a lookahead procedure
called forward checking (to anticipate the future) which emplovs the
most likely to fail principle performs better than standard backtracking,
Ullman's Waltz's, Mackworth's, and Haralick's discrete relaxation in all
cases tested, and better than Gaschnigs backmarking in the larger

problems. .

e v

porwr et

I. INTRODUCTION

Associated with search procedures are heuristics. In this paper
we provide a theory which explains why two heuristics used in constraint
satisfaction searches work. The heuristics we discuss can be given

a variety of one line descriptions such as:

Lookahead and anticipate the future in order to succeed in the present. 2

NI ekl

To succeed, try first where you are most likely to fail. i
Remember what you have done to avoid repeating the same mistake. i

Lookahead to the future in order not to worry about the past.

We will attempt to show that for a suitably defined random comstraint
satisfaction problem, the average number of tree search operations
which employs these principles will be smaller tgan that required by
the standard backtracking tree search.

To begin our discussion, we need a precise description of the

constraint satisfaction problem we are attempting to solve by a search

procedure. We assume that there are N units (some authors call these
variables instead of units). Each unit has a set of M possible values
or labels. The constraint satisfaction problem we consider is to
determine all possible assignments f of labels to units such that for
every pair of units, the corresponding label assignments satisfv the
constraints. More formally, if U is the set of units and L is the

set of labels, then the binary constraint R can be represented as a

binary relation on U x L: R € (U x L) x (U x L). If a pair of unit-

R e I L Wil =0 iz T L B e e S

e xS .

labels (“1’z1’“°'62) ¢ R, then labels il and {, are said to be

consistent or compatible for units «, and u,. A labelling f of all the

1
units satisfies the constraints if for every pair ul,uz of units
(ul,f(ul),uz.f(uz)) £ R. Haralick et al. (1978) call such a labeling
a consistent labeling.

The problem of determining consistent labelings is a general
form of many problems related to artificial intelligence. For example,
scene labeling and matching (Barrow and Tenebaum, 1976, and Rosenfeld
et al., 1976), line interpretation (Waltz, 1972), edge labeling
(Haralick, 1978), graph homomorphisms and isomorphisms (Ullman,
1969), graph coloring (Harary, 1969), boolean satisfiability (Haralick
et al., 1978), and proposition theorem proving (Kowalski, 1975) are

all special cases of the general consistent labeling problem.

Ullman (1966), Waltz (1972), Rosenfeld et al. (1978 and 1979),
Gaschnig (1977, 1978 and 1979), and McGregor (1979) attempt to
find efficient methods to solve the consistent labeling problem.
Knuth (1975) also analyzes the backtracking tree search, which is
the basis of most methods used to solve the consistent labeling
problem.

For the purpose of illustrating the search required to solve
this problem, we choose the N~queens problem, how to place N-queen

on an N x N checkerboard so that no queen can take another. Here, the

unit set corresponds to the row coordinates on a checkerboard and we
denote them by positive integers. The label set corresponds to the

column coordinates on a checkerboard and we denote them by alphabetic

NS T e VR - < TR W AT, "W T M APt £ B rra -y 8

characters. Hence, the unit-label pair (1,A,2,D) satisfies the
constraint R, [(1,A,2,D) € R], since a queen on row 1 column A
cannot take a queen on row 2 column D. But, the unit label pair
(1,A,3,C) does not satisfy the constraint R because queens can
take each other diagonally (see figure 1).

Using the number letter convention for unit-label pairs, Figure
2 illustrates a portion of a backtracking tree trace for the 6~
queens problem. Notice how the unit 5 labels A, C, E, and F occur
twice in the trace, each time being tested and failing for the same
reason: incompatibility with units 1 or 2. These redundant tests
can be eliminated if the fact they failed can be remembered or if
units 1 or 2 could lookahead and prevent 5 from taking tlie labels
A, é, E, or F. The remembering done by Gaschnig's backmarking
(1977) and the forward checking approach described in this paper
help eliminate these problems. Notice that once unit 3 takes label
E (Figure la) the only labels left for units 4 and 6 are incompatible.
The forward checking algorithm will not discover this future
incompatibility. However, the first time label B is associated with
unit 4, there is absolutely no label possible for unit 6. Hence,
the search through the labels for 5 and 6 are entirely superfluous
and forward ckecking will discover this (Figure 1b). The lookahead
procedures (discrete relaxation) of Ullman (1966), Waltz (1972),
Rosenfeld (1976), Mackworth (1977), and Montanari (1974) help

alleviate the problem illustrated in Figure la as well as in Figure

1b.

-4 -

Section II gives a description of the full and partial looking
ahead, forward checking, backchecking, and backmarking procedures. In
section III we compare the complexity of these algorithms as they solve
the N-queens problem and problems generated randomly. We measure com-
plexity ir terms of number of table lookups and number of consistency
checks. These results show that standard backtracking is least efficient
in most cases and bit parallel forward checking is most efficient for the
cases tried.

In section IV, we give a statistical analysis of constraint satis-
faction searches and demonstrate the statistical reason why forward
checking requires fewer expected consistency checks than standard back-
tracking., In section V we explore other applications of the fail first
or prune early tree search strategies and show that such particular
strategies as choosing the next unit to be that unit having fewest labels
left and testing first against units whose labels are least likely to
succeed reduce the expected number of consistency tests required to do
the tree search. Finally, by changing the unit search order dynamically
in every tree branch so that the next unit is always the one with fewest
labels left, we show experimentally that performance improves for each

procedure and that forward checking even increases its computational

advantage over the other algorithms,

-5 -
A B C D E F
1 g\
Ll h
2 I N
RN
NPT
7/
3 | , r\\ \\ A
1] 9
\/ | AR B
L 4 ! /\\ j\\ \\\
T I/ T
| 1 N N)
3 e N
{
T t
/
6 | L’] : \\ ¥
] 1 1 N\
{a)
A B C D E F
K
N\
1
N
2NN AN Y |
| Nfeog N
I N
/s \
N
3 : // l\ N /&
i i s I\ N
7’ | o~/ AN
b 4 /" I T\ A
N s |
|/ | \! \\
3 1] /| :\ h
Il ! N
6 ! J/ ! N i \\
|V | | N
(b]

Figure la illustrates how the lateling A,C,E for units
1,2,3 implies that the only labels for units
4 and 6 are incompatible in the 6 queens
problem.

Figure 1b {llustrates how the labeling A,C,E,B for units
1,2,3,4 implies that there is no label for
unit 6 in the 6 queens problem.

T ST E ARV s v e

Figure 2

e o A———.“Q—“

-6 -
1 A
2 A,B
2 C
3 A,B,C,D
3 E
4 A
4 B
5 A,B,C
5 D
6 4,B,C,D,E,F
5 E,F
4 C,D,E,F
3 F
4 A
4 B
5 A,B,C,D,E,F
4 C,D,E,F

illustrates a segment of a tree trace that the
standard backtracking algorithm produces for

a 6 queens problem. No solutions are found in
this segment. The entry 2 A,B, for example,
indicates that labels A and B were unsuccessful
at level 2, but 2 C succeeds when checked with
past units, and the tree search continues with
the next level.

29 1 _anl
]
~
]

g iy

iI. SOME PROCEDURES FOR TREE SEARCH REDUCING

In this section we give brief descriptions of five procedures,

and a variation of data structure in one, which can be used within

the standard backtracking framework to reduce tree search operations.

B S dbiia b
piie o) it

They are called full and partial looking ahead, forward checking,
! backchecking, and backmarking. Each of these procedures invests
resources in additional consistency tests or data structures at
each point in the tree search in order to save (hopefully) more
i consistency tests at some point later in the tree search.

For ease in explaining these procedures, we call those units
already haviag labels assigned to them the past units. We call the

unit currently being assigned a label the current unit and we call

o Le e 3 AL~ SRS

units not vet assigned labels the future units. We assume the existence

of a unit-label table which at each level in the tree search indicates

R

which labels are still possible for which units. Past units will of

course have only one label associated with each of them. Future

e

units will have more than one. The tree search reducing procedures
invest early to gain later. Hence, the result of applying any of

them in the tree search will be to decrease the number of possible

labels for any future unit or reduce the number of tests against

past units.

II.1 Looking Ahead

i
Waltz filtering (Waltz, 1972), a procedure by Ullman (1966), :

discrete relaxation (Rosenfeld, Hummel, Zucker, 1976), and the :

2

~

- g - R - ” T y DA I B B T 3
TR e e My e g @Y T T Ui S ¢ A 3 e I :] [L. »gon g 21 AXUR I L mt“,
Eatalnat. 2 d S da s AENA X Wt v N

¥ operator of Haralick et al. (1978) are all examples of algorithms
that look ahead to make sure that (1) each future unit has at least
one label which is compatible with the labels currently held by

the past and present units and (2) each future unit has at least

one label which is compatible with one of the possible labels for
each other future unit. Looking ahead prevents the tree search from
repeatedly going forward and then backtracking between units u and v,
V < u, only to ultimately discover that the labels held by units

1 through v cause incompatibility of all labels between some unit

w, Ww > u, and some past, current, or future unit.

Because looking ahead in this manner cannot remember and save
most of the results of tests performed in the lookahead of future
units with future units for use in future lookaheads, the full savings
of looking ahead are not realized for many problems. A partial look
ahead that does not do all the checks of full look ahead will perform
better, and one that checks only future with present units (neglects
future with futures) will do much better because all tests it performs
can be usefully remembered.

The procedure L _A TREE SEARCH and its associated subroutines
CHECK-FORWARD and LOOK_FUTURE (Figure 3 a,b, and c) is a formal
description of the full looking ahead algorithm, which can easily
be translated into any structured recursive language. U is an integer
representing the unit, and will increment at each level of the tree
search. It takes on the value 1 at the initial call. F is a one
dimension array indexed by unit, where entry F(u) for unit u« is

the label assigned to u. T and NEW T are tables, which can be thought

A ot

[}
O
]

;¥ of as an array of lists, T(u) is a list of labels which have not

yet been determined to be not possible for unit «. (We implemented

T as a 2 dimension array, with the number of entries in each list

(or row) stored in the first position of the row. This implementation

uses approximately (NUMZBER__OF_UNITS)2 x (NUMBER OF LABELS) words

i PG o A WAL

of memory for table storage since there can be NUMBER OF UNITS .

LY

levels of recursion.) The tree search is initially called with T
containing all labels for each unit. All other variables can be
integers. EMPTY TABLE and NUMBER OF UNITS and NUMBER OF LABELS

have obvious meanings.

Vi g G P2

The function RELATION(ul,Zl,uz,EZ) returns TRUE if (ul,ﬂl,uz,ﬂz)

e R, otherwise it returns FALSE. CHECK_FORWARD checks that each

> Fabts v

H future unit label pair is consistent with the present label F(u)

¢ o)

for unit U as it copies the table T into the next level table
NEW_T, LOOK_FUTURE then checks that each future unit label pair
in NEW_T is consistent with at least one label for every other unit,

and deletes those that are not.

In this implementation CHECK FORWARD and LOOK FUTURE return
a flag, EMPTY ROW_FLAG, if a unit is found with no possible consistent
labels. Thus the next level of the tree search will not be called,
otherwise each entry in NEW T is consistent with u, F(u), and therefore,

all the past unit-label pairs.

I1.2 Partial Looking Ahead

Partial looking ahead is a variation of looking ahead which does

A

approximately half of the consistency checks that full looking ahead

does while checking future with future units. Each future unit-label

b e v o R e TV

Ay on - -
s “\Y‘-'Jl » et T L . ‘M('
e A :

TN g M N W ey s ag

! AP i 1

e -

- 10 -

pair is checked only with units in its own future, rather than all

other future units. Thus partial looking ahead is less powerful

than full looking ahead in the sense that it will not delete as

many unit-label pairs from the lists of potential future labels.

We will, however, see that partial looking ahead does fewer total {
consistency checks than full looking ahead in all cases tested.

The checks of future with future units do not discover inconsistencies
often enough to justify the large number of tests required, and these
results cannot be usefully remembered. Since partial looking ahead
does fewer of these less useful tests, it is more efficient. A look
ahead that checks only future with current or past units can have
better performance since these more powerful tests can also be
usefully remembered.

The formal algorithm for partial looking ahead is L_A TREE SEARCH
(figure 3a), with the call to LOOK_FUTURE on line z replaced with

an identical call to PARTIAL LOOK FUTURE (figure 3d).

II.3 Forward Checking

Forward checking is a partial lookahead of future units with
past and present units, in which all consistency checks can be remembered
for a while. This method is similar to looking ahead, except that
future units are not checked with future units, and the checks of
future units with past units are remembered from checks done at past
levels in the tree search. Forward checking begins with a state of
affairs in which there is no future unit having any of its labels

inconsistent with any past unit-label pairs. This is certainly true)

at the base of the tree search, since there are no past units with
which to be inconsistent. Because of this state of affairs, to get
the next label for the current unit, forward checking just selects
the next label from the unit label table for the current unit. That
label is guaranteed to be consistent with all past unit label-pairs.
Forward checking tries to make a failure occur as soon as possible in
the tree search by determining if there is any future unit having
no label which is consistent with the current unit-label pair.
If each future unit has consistent labels, it remembers by copying
all consistent future unit-label pairs to the next level's unit
label table. If every future unit has some label in the unit label
table which is consistent with the current unit-label pair, then the
tree search can move forward to the next unit with a state of affairs
similar to how it started. If there is some future unit having no
label in the unit label tablf which is consistent with the current
unit-label pair, then the tree search remains at the current level with
the current unit and continues by selecting the next label from the
table. If there is no label then it backtracks to the previous unit
and the previous label table.

The formal algorithm for forward checking is the Procedure
L A TREE SEARCH (Figure 3a) with line 5, the call to LOOK FUTURE,
removed. Forward checking is just looking ahead, omitting the future
with future checks.

An improvement in efficiency can be gained in the lookahead
type of algorithms by using a data structure for the unit - label

tables that is suggested by McGregor (1979). McGregor simultaneously

- 12 -

developed a weaker form of the forward checking algorithm and compared

them on subgraph isomorphism problems. In L_A TREESEARCH and CHECK_FORWARD

the lists T(u) or NEW_T(u) can be stored as bit vectors, with one bit in

the machine word for each possible label (this is essentially a set

representation). Lines 4, 5 and 6 in CHECK_FORWARD (figure 3b) can then ¢

be replaced with the following statement:
NEW_T(U2) = AND(T(U2), RELATION_BIT_VECTOR(U,L,U2))

This single statement replaces a loop, taking advantage of the parallel ,

bit handling capabilities of most computers. RELATION BIT_ VECTOR (u,ﬂ,uz)

returns a bit vector with a bit on in each position corresponding to a

label £2 for which RELATION (w,£,uZ,£?) would have been true. This is

essentially the set {Kzl (u,Z,uz,ﬁz) € R}. Thus NEW_T (u2) becomes the

set {22 € T(u2)| (u,ﬂ,uz,ﬂz) e R}, precisely what lines 4, 5, and 6 do.

If the number of labels is less than the word length of the computer used,

then the relation can be directly stored in an array of size (NUMBER OF _

UNITS)Z.x (NUMBER_OF_LABELS), and the tables T and NEW_T will take

approximately (NUMBER_QF_pNITS)Z words of storage. Reduced forms of the

relation exist for some problems, such as the N-queens problem or the

subgraph isomorphism problem, in which only two dimensional tables need

be stored and a quick calculation will generate the needed list. The

same technique can be applied to the full and partial looking ahead

algorithms, but they will not be compared here since the three algorithms

will have approximately the same relationships of efficiency, to each

other, with or without the improved data structure.

N T e e e £y

1I.4 Backchecking

Backchecking is similar to forward checking in the way it
remembers unit label pairs which are known to be inconsistent with
the current or any previous unit label. However, it keeps track of
them by testing the current unit label only with past unit label
pairs and not future ones. So if, for instance, labels A, B, and C
for unit 5 were tested and found incompatible with label B for unit
2, then the next time unit 5 must choose a label, it should never
have A, B, or C as label possibilities as lcng as unit 2 still has
the label B.

Each test that backchecking performs while looking back from
the current unit w to some past unit v, forward checking will have
perfprmed at the time unit Vv was the current unit. Of course,
at that time, forward checking will also have checked all future
units beyond unit «. Hence, backchecking performs fewer consistency
tests, an advantage. But backchecking pays the price of having
more backtracking and at least as large a tree as forward checking.

Backchecking by itself is not as good as forward checking.

II.5 Backmarking

Backmarking (defined in Gaschnig, 1977, and also discussed in
Gaschnig, 1978) is backchecking with an added feature. Backchecking
eliminates performing some consistency checks that were previously
done, had not succeeded, and if done again would again not succeed.

Backmarking also eliminates performing some consistencyv checks that

. "“Mr'f&.ﬁt-warv Ko R L XA 2

- 14 -

were previously done, had succeeded, and if done again would again
succeed. To understand how backmarking works, recall that the tree
search by its very nature goes forward, then backtracks, and goes
forward again. We focus our attention on the current unit «. We let
v be the lowest ordered unit to which we have backtracked (has changed
its label) since the last visit to the current unit «. Backmarking ?
remembers v. If v = u, then backmarking proceeds as backchecking.

If v < u, then since all the labels for unit «u had been tested in

the last visit to unit u«, any label now needing testing, needs only
to be tested against the labels for units v to u-1l, which are the

ones whose labels have changed since the last visit to unit u. !
That is, the tests done previously against the labels for units 1 i

through v~1 were successful and if done again would again be

TG A AR IR DT A

successful because labels for units 1 thorugh v-1 have not changed

pEreryy

and the only labels permitted for the current unit u are those which

have passed the earlier tests (see figure 4). f
The formal algorithm for Backmarking appears in figure 5.

It is essentially Gaschnig's algorithm (in Gaschnig, 1977), but

modified to find all solutions. The variable U and array F are the

same as in looking ahead. LOWUNIT is a one dimensional array of

NUMBER OF UNITS entries, and LOWUNIT(i) will indicate the lowest

level at which a change of label has occurred since the last time

the MARK array is set. MARK is dimensioned NUMBER OF UNITS by

NUMBER_OF_LABELS, and MARK(u,{) will indicate the lowest level at

which a consistency test failed when the unit label pair (u,&)

at the current level was last tested against the previous unit

label pairs on previous levels. At any point if MARK(u,{) is less
than LOWUNIT(u) then the algorithm knows that (u,l) has already
been tested against the unit - label pairs at levels below the value
in LOWUNIT(u) and will fail at level MARK(u,{), so there is no
need to repeat the tests. If MARK(u,£) is greater or equal to
LOWUNIT(w) then all tests will succeed below the level LOWUNIT(w)
and only tests against units at LOWUNIT(u) to the current unit
need be tested.

Before the initial call to BACKMARK, all entries in LOWUNIT
and MARK are initialized to 1, and BACKMARK is called with the initial
w = 1. Since the same MARK and LOWUNIT arravs are used at all levels
of recursion of the tree search, approximetely (NUMBER OF UNITS) x

(NUMBER_OF LABELS) words of table storage are needed.

e RN o LR Mkt o it o e 1 el TR R TR

;Mm:«*mnm@;z#!!!lllllllIllIIIIlllIlIlllIlllllllllllIlllI--:HIT
. R

1

~ 16 - |
i
{
!
1. RECURSIVE PROCEDURE L_A TREE SEARCH(U,F,T);
FOR F(U) = each element of T(U) BEGIN

~

—————— o e it o

3. IF U < NUMBER OF UNITS THEN BEGIUV

4. NEW_T = CHECK_FORWARD(U,F(U),T);

5. CALL LOOK FUTURE(U,NEW_T);

6. IF NEW T is not EMPTY_ ROW FLAG THEW

7. CALL L_A TREE_SEARCH(U+1,F,NEW_T);

8. END;

9. ELSE

10. Output the labeling F; 7
11. END; f

12. END L_A TREE_SEARCH; i

Figure 3a)

PROCEDURE CHECK_FORWARD(U,L,T);
NEW T = empty table;
FOR U2 = U+l TO NUMBER OF UNITS @EGIN
FCR L2 = each element of T(U2)
IF RELATION(U,L,U2,L2) THEN
Enter L2 into the list NEW_T(U2);
IF NEW_T(U2) is empty TEEZY
RETURN (EMPTY ROW_FLAG); /* No consistent labels */
END;
RETURN (NEW_T);
END CHECK FORWARD;

T MY TR e T

o T V. SR OO e

-
= O

Figure 3b

Figures 3a, b, and c express the full lcoking ahead algorithm.
Replace the call to LOOK _FUTURE at line 5 in figure 3a
with an identical call to PARTIAL_LOOK FUTURE (figure 3d)
and the partial looking ahead algorithm is obtained.
Forward checking consists of figure 3a and 3b with line 5
of figure 3a, the call to LOOK_FUTURE, deleted so that only
CHECK_FORWARD is called. Forward checking does no checks
of future units with future units.

- 17 -

1. PROCEDURE LOOK_FUTURE(U,NEW_T);

2. IF U+l > NUMBER OF UNITS THEN RETUZN;

3. FOR Ul = U+l TO NUMBER OF UNITS BEGIY

4. FOR L1 = each element of NEW _T(Ul)

5. FOR U2 = U+l TO NUMBER OF UNITS except skipping Ul BEGIN

6. FOR L2 = each element of NEW_T(U2)

7. IF RELATION(U1,L1,U2,L2) THEN 3
8. BREAX for L2 loop; /* consistent label found */ k
9. IF no consistent label was found for U2 THEN BEGIN ,
10. Delete L1 from list NEW T(Ul); ;
11. BREAX for U2 loop; /* unit U2 has no label

consistent with Ul,L1 */

12. END;

13. END for U2 loop;

14, END for L1 loop;

15. IF NEW_T(Ul) is empty THEN BEGIN

16. NEW T = EMPTY ROW_FLAG;

17. RETURN;

18. END;

19, ZND for Ul loop;

20. RETURN;
21. END LOOK_FUTURE;

Figure 3c

Figure 3c is the LOOK FUTURE procedure, which deletes future
labels which are not consistent with at least one
label for every unit other than the labels own unit.

R

—— s ey o e r— m

- 18 -

1. PROCEDURE PARTIAL_LOOK FUTURE(U,NEW T);
2. IF U+l > NUMBER OF UNITS THEN RETURN;
3. FOR Ul = U+l TO NUMBER OF UNITS - 1 BEGIN
4. FOR L1 = each element of NEW_T(Ul)
5. FOR U2 = Ul+l TO NUMBER OF UNITS BEGIN
6. FOR L2 = each element of NEW T(U2)
7. IF RELATION(U1,L1,U2,U2) THEN
8. BREAK for L2 loop; /* consistent label found */
: 9. IF no consistent label was found for U2 THEN BEGIN
% 10. Delete L1 from list NEW _T(Ul);
3 11. BREAK for U2 loop; /* unit U2 has no label
; consistent with Ul,L1 */
12. END;
13. _END for U2 loop;
14, END for L1 loop;
15. IF NEW_T(Ul) is empty THEN BEGIN
16. NEW T = EMPTY ROW_FLAG;
17. RETURN;
18. END;
19. END for Ul loop;
20. RETURN;

21. END PARTIAL_LOOK FUTURE;
Figure 3d

Figure 3d is the PARTIAL LOOK FUTURE procedure. It differs from

! LOOK FUTURE (figure 3¢) only at lines 1, 3, and 5. Each
' future unit-label pair is checked only with units in its
own future.

B e bt e ad ekl i LT B O T R prearirl

UNIT NUMBER

v i A Wity)

LSS SN Y chnipaith o)

NUMBER OF CONSISTENCY CHECKS

Figure 4 illustrates a segment of a tree trace. Because
backmarking remembers from the first visit to
unit u which labels for u were compatible with
the labels for units 1 through v-1 (segment A) do
not have to be performed. Only those for units
v through u-1 (segment B) have to be performed.

—

seie

- - WY g

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12,
13.
14,
15.

16.
17.

18,

19.
20.
21.
22.
23.

- 20 - |

RECURSIVE PROCEDURE BACKMARK (U, F,MARK,LOWUNIT);
FOR ¥(U) = 1 TO NUMBER OF LABELS BEGIN
IF MARK(U,F(U)) > LOWUNIT(U) THEN BEGIN
TESTFLAG = ITRUE;
I = LOWUNIT(U);
WHILE (1 < U) BEGIN /* Find lowest failure */
TESTFLAG = RELATION(I,F(I),U,F(U));
IF NOT TESTFLAG THEN BREAK while loop;
I=1I+1;
END while loop;
MARK(U,F(U)) = I; /* Mark label with lowest failure */
IF TESTFLAG THEN
IF U < NUMBER_OF UNITS THEN
CALL BACKMARK(U+1,F,MARK,LOWUNIT);
ELSE
Output the labeling F;
END;
END for F loop; *
LOWUNIT(U) = U - 1;
FOR 1 = U+l IO NUMBER OF UNITS;
LOWUNIT(I) = MIN(LOWUNIT(I),U-1);
RETURN;
END BACKMARK;

/* Previous level will now change */

Figure 5 is Gaschnig's backmarking procedure as it was modified to

-

g T TN L ey e el g TR i’ 3 NG Zadkad

find all solutions to constraint satisfaction problems
(see Gaschnig, 1977).

v
3

i

e - -——— e T 4 G T W
R R WY IONEIW O ™ 1 7 3
24 o > .

Ny

- 21 -

III. Experimental Results

In this section we compare the six procedures, partial and
full looking ahead, backtracking, backchecking, forward checking, |
and backmarking, on the N-queens problem for 4 < N < 10, and on
a random constraint problem. We assume that the unit order is
fixed in its natural order from 1 to N and that all consistency
tests of the current unit with past units or future units begin
with the lowest ordered unit. The label sets will conmsist of all

N columns; no consideration is given to the various symmetries

peculiar to the N-queens problem.

The random constraint problems are generated using a pseudo-
random number generator. A random number is generated for each
possible consistency check (ul,Zl;uz,ﬂz) for the relation R, sq that
each entry in the relation will be made with probability p. A
probability of p = 0.65 is chosen so that problems will be generated
that are somewhat similar to the N-queens problem.

The comparison among the tree search reducing procedures
indicates that backtracking is least efficient in most cases, and
that backmarking and forward checking are more efficient for the
cases tested. Bit parallel forward checking, which takes advantage
of machine parallelism, is the most efficient for all cases tried.

Our comparison of algorithm complexity will be in terms of nine

criteria involving number of consistency tests, number of table
lookups, and number of nodes in the tree search. There are a variety
of ways of presenting these results including

1. Number of consistency tests performed to obtain all solutions

(figures 6 and 8).

BT 901D 7T e e W s TG] T RUREACTTRIG L yors e tee - W1 . 1%

- 22 -

2. Number of table lookups used in finding all solutions (figures
10 and 11).

3. Number of nodes in the tree search teo obtain all solutioms
(figure 12).

4, Number of nodes visited at each level in the tree search.
(figure 13).

5. Number of nodes found to be consistent at each level in the
tree search, or consistent labelings to depch (figures 17 and
18).

6. Number of comsistency checks at each level in the tree search
(figure 19).

7. Number of table lookups at each level in the tree search
(figure 20).

8. Percen;;ge of nodes at each depéh th;t fail because an incon-
sistency was found at thar depth (figures 21 and 22).

9. Averaye number of table lookups per consistency check (figures
23 and 24).

Figure 6 indicates that the number of consistency tests
performed to obtain all solutions seems to increase exponentially
with N for the N~queens problem. The number of solutions to the
N-queens probelm also appears to increase exponentially (see figure
7). The number of bit vector operations is also shown, for forward
checking done in the bit vector data structure. Though backmarking
appears to do slightly fewer consistency checks than forward
checking on the N-queens problem, the use of machine parallelism
gives bit parallel forward checking a clear advantage over all the

other algorithms.

- 23 -

Random constraint problems with fixed probability .65 of consis-
tency check success probability of 0.65 are tested in figures
8 and 9. The number of consistency tests appears to grow expon-
entially in figure 8, until a sufficiently large problem size is
reached. At this point the number of solutions drops, as is
indicated in figure 9, and the number of consistency tests appears
to grow more slowly. Figure 9 explains the unevenness of the !

curves in figure 8. Too few random relations were tested for the

WFS - P

means to settle closely to the expected values for this type of
problem, and the average number of solutions varies eratically
high and low.

In the random problems, forward checking does slightly fewer
consistency checks than backmarking in the larger problem sizes, z
and once again maching parallelism gives bit parallel forward |
checking a clear advantage.

The number of table lookups for the N-queens and random
relation problems are compared in figures 10 and 11. Only the
lookups in the MARK array in backmarking and backchecking, and the
T or NEW_T tables in the lookahead type algorithms are considered.

These table lookups occur at line 3 in figure 5, backmarking,

line 2 in figure 3a, line 4 in figure 3b, and lines 4 and 6 in

each of figures 3c and 3d, the lookahead type algorithms. The

ORI

2
s >

entering of values into the tables are not considered, since they
always follow at least one consistency check, and never happen

more often than consistency checks.

- 26 -

BACKTRACKDNG ®
FULL LOOKING AHEAD ©
BACKCHECKING ®
PARTIAL LOOKING AHEAD ©
FORWARD CHECXING &
BACCIARKDNG & f
BIT PARALLEL FORWARD CHECXING @ -3
0%+ (BIT VECTOR OPERATICNS) :
H
2
5 <
m .
ol 5
= i
Q
=2
u "
=)
2 a
2 ;
z 1
=] | F
o N .
[) w d"
2 |
i 103 r~ -I
3 |
z !
i
|
|
|
1Q8k -
a z 3 7 3 3 C

NUMBER 2F SUEZNS

Figure 6 compares the efficiency of the standard backtracking
procedure with backchecking, looking ahead, forward
checking, and backmarking, for the N-queens problem in
the natural unit order. The number of bit vector
operations for bit parallel forward checking is
also shown.

b }

- e sy

e - ' Y YRR AR /= 5/ 1 L KT e
B (4 b god M 2t K L3
reaerean " iy WD SO e ""’“"w N . o it ar o' ' v L vy

A/

-25-

%,
T ' T 1] D]
10°L -
!
i
{
’! o
_A 1031 .
n
i Z
i 5
4 [
=
fi =
i wn
[
& .42
104{-
o 0]
]
@
3
10|~ .
4 I ! !] |
6 7 8 9 10 " 12 13
N
Figure 7 illustrates the number of solutions for the

N-queens problem.

TR T TN N R M ey

b
I

;“
“
]

ST,

PR

/ BACGKTRACKING

. !
oL 1
/IBACKA'}EC{ING
o LOCKING AHEAD !
, ARTIAL LOOKING AHEAD !
‘ CARKING
,/’///ﬂnmwmxmﬂznm
Topg W 7
BIT PARALLEL RRWARD CHECXING
- (biz vector operations)
—
<
Do
<
Zz
o
Q
2
c !
(&
- ':
© o3k B
= :
e ! '
g | ?‘
= :
2
i \
]
0% -

4 5 6 T 8 9 c !
NUMBER OF UNITSsNUMBER OF _ASELSaN

Figure 8 represents the number of consistency tests in the
average of 5 runs of the indicated programs.
Relations are random with consistency check probability
p=0.65 and number of units = number of labels = N.
Each random relation is tested on all 6 methods, using
the same 5 different relations generated for each N.
The number of bit-vector operations in bit parallel
forward checking is also shown for the same relatioms.

e 1A < R At

NUMBER OF SOLUTIONS

10 b 1 1 i\ ! e 1 L

& 5 6 7 8 S 10
N = NUMBER OF UNITS :NUMBER OF LABELS

Figure 9 shows the average number of solutions for the prob-
abilistic relations in figure 8. This is the
average of 5 experiments for each problem size,
and relations are random with consistency check
success probability p=0.65. The dotted curve is
the expected number of solutions.

[H])

Q -
® FULL LOOKING AHEAD |
B PARTIAL LOCKING HED z
£ BACKCHECXING :
\ BACMARKING :
9 RORWARD THECXING I
t
. ':
i » .
2 . 3BIT PARALLEL SDRWARD JEXING
<= (bif veetsr LJOKUPS) =
& !
,? !
. » N l
L '
,'v’ /./ ' !
S8)
N |
A i
;]
a . -
o -) / ’
./ |
: /e ,
; i
{ ;
?_ o/ ‘ ’
: . 1
X
= a !
= i
1 A -
ot :C \ . ° i
2 t |] ;
pad i -
| r
, ry
: °
} .
| a
2! ' -
¢ [‘ 4
.
| s
|
l ?
4 z 8 = 3] 'C NLMEES CF LgInE

Figure 10 shows the number of table lookups used to find
all solutions to the N~queens problem for varving
N, with the natural unit order.

TR, T TN | M 13 B fyer - g

R ——

- 29 - B

i‘
I A3
! i
b ! :
B | i
' !
i | {
, P £
i - - 5
o i
: BACKCHECKING - 3ACCLRYING i
: rULL LOOKING AHEAD i
M PARTIAL LOOKING AHEAD
: I
5 . i
FORWARD CHECKING ;
]
I
i o
) = BIT PARALLEL RORWARD ZECKING ;
V IC""' » ‘hit vector lockups) - - 4
I d
!
i &
[k
» %
; 3 | {
& > ' 3
L) 3 3k -]
| ’ = t:
3 w N :
A — i .!‘
4 z oo .
— . : /)
| 8, // . N
i A =
‘: /’ / ,
Lol ‘
! ..
CEL a -]
: i
- +
: !
’ E
|
' {
$ < - - -
! - B 3) 3 3 ol
N2 NUMBE3 ZF _M173 = NUMSES TF _A32.3
' Figure 11 shows the number of table lookups for the average of
5 random relations at each N, with number of units =
number of labels = N, and probabilicty of comsistency
check success p = 0.65. These random problems are the
same as shown in figures 8 and 9.
¥

T e g

— e -
. 3 -

AN Y e 1 R L T IR NN et C1 10 5o 0 gl |k i N T SR Y Wi

it
DYk,

BRRERM P S LN S

S 3

I

3
} 01
‘ !
1 |
s | . .
! 3ACMARKING
’ !
| S -
k\ [
b
‘,‘ 9 FORWARD HEZXZ!
° B 2ARTIAL LOCKING SHEAD
. = AULL LOOKDNG SHEMD
cr -
- ° ,
i a l//
e ; Y [1
= | :
Z ‘, .
- i Q
z | '
Cr R W % -
= C | . 2
a 1
< ! , i
= : - 3’ -
. = i
3 P ; L] i
% z ’
£ | ' 5
3: ZL : ! -
¥ Ci
g : e
| L4 . -
{ ?
! /l//'/;
’ ,I’/,‘/ .
e/’
Q! ‘-’
~ =) - -
= 2 3 h 3 3 SONULMEER F L .ENs

Figure 12 illustrates the number of nodes in the treesearch to
find all solutioms to the N-queens problem for varying
N.

' - 31 -
\
1
E ;
k!
¢ !
i \
| ot -
| | |
: .
1 H
| | ;
1
| /’\\ |
/ \ BACKTRACKLIG A
A * BACKCECKDNG ¥
/ _ BACKMARKING S
:/
c3b » J
i ‘,,
‘ t
- ; /\ FORWARD CHECXTNG i
G K [} , \\/ i
3 | . DSRTIAL .
‘ f‘ ! (\' SOKNG \\\ }
N H \ &FHEJD !
AN : \ X !
: i \ \J \\ i
d \ ‘ |
| L ’: ! /’ () v
v i z02L o FULL -
:) ! o L00KING :
1 2 o AHEAD !
¥ g ! * . ;
l{ >] ’r /
| ; = .
E = | l
- i .
= j .
2 ’
i : |
z B
! M
i /
1 o/ -
X 1 »
‘ i
| | ‘ 2 3 4 3 3 T 3 F
i K s 3€2™H M TREET SEARCH
o

- et 3wt

Figure 13 shows the number of nodes visited at each depth of
the treesearch to find all solutions of the 8-queens
problem, for the various algorithms.

t
4
!

-32_
1 A
2 C
2 D
3 B,F
2 E,F
1 B :
2 D .
3 A 3
3 F -
4 A f
5 ¢ 5
6 E i
2 E b
3 A,C
2 @

figure 14 shows a segment of a tree trace made by the
full looking ahead procedure in a 6-queens
problem. One consistent labeling,
1B 2D 3F 4A 5C 6E, appears in this protion of
the trace. 1A 2C fails to spawn any further
nodes because the LOOK FUTURE algorithm will,
after deleting several potential labels, discover
that one future unit has no possible labels.

ORI, T TPV e 11 o 1w o o (SN

—33-
1 A
2 C
3 E,F
, 2 D
3 B,F
! 2 E
3
3 3 B
% 2 F
E 1 B
; 2 D
] 3 A
; 4 C
1 3 F
3 . A
3 S
6 E
2 E
3 A
4 F
3 C
2 F

Figure 15 is a segment of a tree trace showing the nodes of the
tree search in the partial looking ahead procedure
in a 6~-queens problem. One consistent labeling,
1B 2D 3F 4A 5C 6E, appears in this portion of the
trace. 1A 2C 3A,B,C, and D do not appear because
CHECK_FORWARD removes them from the table at ncdes
1A and 2C. However 1A 2C 3E fails to have successors
because the only labels left for future units 4 and 6
are incompatible and are removed by LOOK FUTURE

(see figure la).

Y g A g 4y e RV T TR L e 78 e ras P

- 3 -

1 A
2 C
3 E
4 B
3 F
4 B
2 D
3 B
4 E
3 F
4 C 3
2 E :
3 B !
4 F
5 C
2 F
3 B,D
1 B
2 D
3 A
4 C
5 E
3 F
4 A o
5 C
6 E
5 E
4 C

Figure 16 shows a segment of a tree trace made by the
forward checking procedure in a 6-queens problem.
One consistent labeling, 1B 2D 3F 4A 5C 6E, is
found. Notice that 1A 2C 3E 4B fails because
the CHECK _FORWARD procedure discovers that there
are no lebels remaining for unit 6 at the 4B node
(see figure 1b).

- s e TRV T T CERIATTIMSE S W T AT v e a prgel]

e — T — yot
: -
- 35 -
1031 -
! -
]
- ~BACKTRACKXING < ‘
L ~ BACKCHECKING -
FORWARD s BACKMARKING
L \GJECKI::G \ -
<o
H ! .
¥ \ -
i z :
3 a. '
i .
; TCTL \ -
4 !
9 t =
z L -
- . .
£ T =
3 L 1
=} i
z !
= -
2] ;
n
r - -
=] /
(&) I !
. / |
w /
g ‘i
z /
f
0b / ~
- ‘ -

Figure 17 illustrates the number of consistent labelings
as a function of tree depth, for the 8-queens
problem with the natural unit order.

T BN L G A s W T, W ORI | A oy A rage R SPaY g

Backtracking is not shown, since it does no table lookups of
the type considered. Partial and full looking ahead always do
more table lookups than forward checking in these cases, and
forward checking does better than backmarking in the larger
problem sizes. Even full looking ahead does fewer table lookups
than backmarking in the larger random problems. The number of
table lookups into bit vectors is smaller than the number of table
lookups in other algorithms, when the bit parallel data structure
is used in forward checking.

Figure 12 demonstrates that full looking ahead visits the
fewest nodes in the tree search, since it eliminates the most
potential nodes during its examination of future unit-label pairs.
Figure 13 indicates that the number of nodes visited in cthe
tree search is largest ‘for the middle levels in the tree search,
w{th the full looking ahead procedure having the fewest nodes at
each level.

Figures 14, 15, and 16 show segments of the trace of nodes
visited by the full and partial looking ahead, and forward checking
algorithms for the 6-queens problem. Backmarking and backchecking
will have the same node trace as backtracking (see figure 2). More
detailed trace of the action of backmarking can be found in Gaschnig,
(1978 and 1979).

Figure 17 shows the number of consistent labelings at each depth
of the tree search for the 8-queens problem, and figure 18 shows
the average number of consistent labelings for random problems.

This is the number of nodes at each level which have not yet been

- 137 -

{
1
3 -
c3 e /-\ - 4
/ L} N .
- G \ 4
- / ; i
= // \ = o
i . BAGKTRACKING ;
- ® 3ACKCHECKING N 3
- \ BACKUARKT:G ‘4
- o \ - ;
v ‘
=3 b / - .
- / i
< / ¥
2 /I \w 3
- b K -
Z . ///‘\\\\ \ ! ‘
= o \ o FORWARD B
k] ’ \ CHECKING . :
< 2 o/ N) >
- Q0 e // ' \ ' -
z i/ A\ ‘ -
- \ -
2 \ : d
12 N]
z : , /\ \ -
= I . PARTIAL \ i
? & ! '» LOOKING N -
é o \ NED 3 |
" * : \ -
. A i
= / AN N |
; L \ . a \ -
3 / LOOKING i
= AHEAD |
L - .
i ;
|
lc b -l
i 1
K

Figure 18 illustrates the average number of nodes visited at
each depth of the treesearch for solutions to 5
random relations with number of units = number of
labels = 10, and probability of consistency check
success of p = 0.65. These are the 5 relatioms
shown at the N = 10 case in figures 8, 9, and 1l.

R b S o PO
sty

- 38 -

Io 0 g 1 1 g 1l 1 T
3
® FULL LOOKING AHEAD O 3ACKTRACKING
8 PARTIAL LOOKING AHZAD & 3ACHCHECIING
& FORWARD CHECKING 2 3ACXMARKING
e .
‘F
[‘
- A
S 4 i
| g Qo r -
bod ;
Q
2
[*¥]
o
r}
N
2
S
) ;
° s
x -
2103 :
2z
2- —
‘0
{ \"
1] [
' {
| :
' [
X ‘
0 2 T & § & - § £ N-S& Eife-
Figure 19 compares the number of consistency tests made
at each level in the tree search for six
different procedures, for the 8-queens problem,
in the natural unit order.
i
&
, . . R

— CEOrWPGYINERE S 1 L AT S
ST T T TR rar e ey : LS PP I PO R

-39 -

Q FULL LOCKING AHEAD
® PARTIAL LOOKING AHEAD
B ORWARD CECKING

4
/—_\\ o BACKCECXING

= 7 3ACRARKDG

oryr

vl

RSN [

1AULE 1 OOKINS
.
/

Figure 20 shows the nubmer of table lookups at each
possible depth k in the treesearch to find all
solutions to the 8-queens problem, for
the various algorithms.

A Y ’ - AN TSR I
Py Y oY, TCRREIE MWL s et A v ot 2 . . 1S Y TN x . ‘_ AR .}‘J: ,\}J, . EE

- 40 -

sofF

I 4 AR

PERCENTAGE OF NODES THAT FAIL DUE TO AN INCONSISTENCY

CCT

8of

7QM

4ot

30f

Figure 21 shows the percentage of nodes at a given depth in

BACKTRACKING
BACKCHECKING
SACORRKING
/\?uu. LOOKENG AHEAD
e \ oamrraL
\ LOOKING FCRWARD ZECKING
/ / ¢ AHEAD »
/ ’/, ‘. //_‘ \\ i
// ;r //m .
; / ,
i ’,’ /\(‘ .
, ! / B
/.‘ .’ ,/ ° .
i /
l | S
. l
, t .‘

(]

Z 3 a 3

OEPTH IN TREE SEARCH

(31}

the tree search which fail because some inconsistency
is detected at that node. Results are shown for

the various algorithms in the 8-queens problem.
Backchecking and backmarking often discover that
there is an inconsistency by using table lookups,
rather than performing all the checks. Nodes

in the lookahead type algorithms fail because a
future unit fails to have any remaining labels

after inconsistent future labels are removed.

- 41 -
' |
ccpr 3ACKTRACKING -
3ACKOECKING i
3ACKURKDG : ;
: ¢
sck- -
o] | :
Z FULL ', :
S 30} LOOKDG AH.E% / 'i
0 !
@ / { !
] b | :
L emi ro - P
2 o} o ; N
- Co ,/.\ i '
E ' N * ' i
5\:' / \/ - I
= | ! '<\\ | V
— . A ' !
| Y | | z
5 = cr , = ;
\ [) ’ ! i
= . T
g T |
- B 5o . _ i
< oy a ’ i
” g0 ! PARTIAL ¢ ORWARD :
w 3Gk > | . LOCKING CTHECKING - :
- : i . . s
Z ! P ‘ A :
2 i , : ‘
3 a2k e =
o
g |
— ! |)
2 i . -
& °r
' 5 | . \. .
: =g ‘ 'y N .
L
~ ! 2 3 3 s 8 T 3 3 iC
: CEFTH N TREZ SEARCH
! Figure 22 shows the percentage of nodes at a given depth
: in the tree search which fail because some incon-
sistency is detected at that node. Results are
. shown for the average over 5 random relatioms,
; with consistency check probability p=0.65 and
: number of units = number of labels = 10.
-
' t
v T e amten e

RSNV EDNEWR A fit | < Ay

\ .

A - e Ty T T T TR e #°0 15 -ivene | £ o RS

e T TR T

Dha e S

- 42 -

found to be inconsistent. Backmarking and backchecking will have
the same search tree as backtracking, and consequently has the same
number of nodes and consistent labelings at each depth (see figures
13, 17, and 18). fheir effic.encies are gained by reducing the
ammount of work spent at each node, checking against past units.
However, the lookahead algorithms perform extra work at each node
to reduce the number of nodes, and as figures 19 and 20 show, the
relation checks and table lookups for the lookahead type algorithms
are concentrated more at the shallow depths of the treesearch.
As figures 6, 8, 10, and 11 show, full and partial looking ahead
do too much work at each node for the problems shown, and forward
checking and backmarking do better.

The percentage of nodes at each depth in the tree search that
fail because some inconsistency is discovered are shown in figures

21 and 22, 1In the cases shown, in the backtracking, backchecking,

and backmarking algorithms, over 95 percent of the nodes (instantiated

labels) fail at the deepest level of the treesearch, because they
are inconsistcont with some past unit-label pair.

The lookahead type algorithms reduce the number of ncdes in
the treesearch in two ways. First by removing entries from the
tables of potential unit-label pairs, and second bv noticing that
some future units may have no possible labels associated with
them. In Figures 21 and 22 all nodes that fail in the lookahead
type algorithms do so for this second reason, since they would not
have occured as nodes if their labels were deleted from the future

unit~-label tables. If lines 7 and 8 are removed from the CHECK

L e

!
¥
[1
b3
e lind o -
Ed
3. - cerm -
-8 .\\\‘ ® 3ACKMANKINT
3 /
4 ,51— -
i N .
a ’
:J,'s’ [3P 3T SIRWARD - 3.3
S 7 ’ - Xoho :
F 2 \ Vi (DlI YeCIor Tap.@ lI0xuDs Jer |
Dl » 3L UegcIar Ionsistanct Ineds
x speracion:
g2k <
N
R o -
S . é ; . —]
- 4. 3 . T 3 3 IC NUMBER IF TUEEINS ¥
'
w gl 7 . - :
fs2] / !
< / L
= Sk o] - R
i 5 b i %
;' x T N\ - F
H W N\
* z sf ——— . TLIRIHEINING 4 !
? b4
5
¥
5
t

Figure 23 shows that in the N-queens problem, all the
algorithms that keep tables, except backmarking,
reference those tables no more than 33 percent
more often than they reference the relation.
However backmarking appears to have a continually
growing ratio of table lookups to relation tests,
as problem size grows.

o

e I;L:‘_AJJM".,

x|
7 l
. _MBACKMARKING
22F e =
v
;
° /
' 20\ / 4
\ /
i \ / -
A . /)
n 18 \\ /ﬁ '
x
Q \\ !
Ik = -
| - N |
- 1.64= \ - s
; > N ‘
- Q N IS
. 4 L - »
] w !
2 w ‘
wn
- 5 14 \ -
q zZ N |
; Q '
© 3 J 31T PARALLEL FORWARD
x ‘2it vecicr Lookups Jer D
' o 12k // R :
1[e /’ . "
, o L/ . ;
> ¢ i :
% A L L L :
‘ 5 IC . : -
. o 4 5 8 7 8 9 0 N=Numberofunits=
: = Number of iabeis ‘
¥ w - e NumDer ol = !
‘. 3 /’—’/.D".L.\\.:Z_l..\.u |
< ost - b
¥ - // I 3.‘
3 L -~ i
x : E
d .
d a S8k = ’
a1 z i k
i 2 J d
]
J
1

- vt

Figure 24 demonstrates that in the average over 5 random
relations for each problem size that was ctested,
that the ratio of table lookups to consistency
checks seems to approach one, except in the

: backmarking algorithm., in which the ratio seems

% to steadly increase with problem size. The randcm

relations are the same as those shown in figures

8, 9, and 1ll.

v P

oy

-

St g e aerat o

FORWARD proucedure in figure 3b, then no nodes would fail in forward
checking (this is McCregor's restricted arc consistency algorithm
in McGregor, 1979). This weaker form of forward checking algorithm
will find all the consistent labelings at each level of the tree search
that backtracking does, but at a higher cost than the original forward
checking algorithm. The replacement of these lines in forward
checking will realize a 15 percent saving of consistency checks and
table lookups in the lO-queens problem, and over 40 percent savings
in the 10 units by 10 labels random problem.

Figures 23 and 24 address the question of what measure best
determines the algorithmic time complexity. A careful check of
all the algorithms will show that no step is executed more often
than the maxiqum of the number of consistency checks or the number
of table lookups. As the problem size increases in the lookahead
type of algorithms, the ratio . table lookups to consistency checks
seems to decrease from a maximum of about 2 to no more than 1.5
table lookups per consistency check in both the N-queens and random
problems. This ratio is guaranteed to be greater than or equal to
one, bv the algorithms structure, thus either may be used as a
measure of algorithmic time complexity for the lookahead type
algorithms.

Because in both the N-queens and random problems backmarking
seems to have a steadily increasing ratio of table lookups to
consistency checks as problem size grows, only table lookups (which

equals the number of nodes in the treesearch in this case) can be

used as a true measure of algorithmic time complexity for backmarking.

NIV N

ot g T g e T S

e T

Only in the case that a computation of a relation check is sig-
’ nificantly more expensive than the cost of a node's loop control

;[and a table lookup will relarion checks be a useful practical

measure for the time complexity of backmarking. The reason i
that it is a practical measure in this case is that the node and

; table lookups cost will dominate the cost of execution only in

very large probelm sizes, so large that the problems can not be

solved in a reasonable time, and relation tests will dominate the

cost in the smaller problems which can be solved in a practical

ammount of time.

1

fvn

- 47 =

IV. Statistical Model for Constraint Satisfaction Searches

Our statistical model for random constraint satisfaction is
simple. The probability that a given consistency check succeeds
is independent of the pair of units or labels involved and is
independent of whatever labels may already have been assigned
to past units. Hence, P((uk+l,£k+l,u,£)sR}ﬂl,...,Zk are

2 ..,u,l)eR) for every

consistent labels of u .,uk)=P((uk+l, K+

1
u,£.

The N-queens problem is a more difficult problem, with fewer
solutions but requiring more consistency tests than the corres-~
ponding random constraint problem with the same probability of
consistency check success. A comparison of the graphs for the two
problems in section III will show that while the numérical values
of the quantities vary considerably, the basic character of the
algorithms operation is similar for both problems.

In our analysis, we will assume that a given pair of units
with a given pair of labels is consistent with probability p,

p being independent of which units, which labels, or anv past
processing. If each unit has the same number, M, of possible
labels, then any k-tuple of labels for any k units has prob-
ability pk(k-l)/2 of being consistent since each labeling must
satisfy x(k~1)/2 consistency checks. Since there are Mk possible
labelings of k units, the expected number of consistent labelings
is

M

k k(k-1)/2
p .

AT T k. W D °

TR

e

Lo iy

JN

PRy

;< ar-syparevovren - PR TTE T

- 48 -

The expected number of nodes processed at level k in a standard
backtracking search will be M, the number of possible labels, times

the number of consistent labelings at the previous level,

k-1 p(k-l)(k-2)/2

M Thus there are

Mk p(k—l)(k-2)/2

tree search nodes at level k.

We can also count the expected number of consistency checks

k p(k—l)(k—Z)/Z

performed by backtracking. We expect M level k

nodes and at each node a label must be tested for consistency with
the labels given the previous k-1 units. The first consistency
check fails with probability 1-p. If it fails, we have spent 1
test. If it succeeds we have spent 1 test and are committed to

make another one which might also succeed with probabilitv p. All

(k-1) tests will succeed with probability p(k-l),

.

Hence the
expected number of comsistency checks performed at each node is

k-1 .
Uit ta-p) o+ DL
i=1

This may be simplified by recognizing the telescopic nature of the
sum which is equal to
k-2 .
i
L e
i=0
But this is a geometric sum and is equal to

k-1
i1-p
l1-p ’
Therefore the expected number of consistency checks at level k
k p(k—l)(k-Z)/Z

will be M , the number of nodes at level k times
k-1
%—E—g——— , the expected number of consistency checks at a node,

o B

Yol Lh caad ottt e ShianleBl B o g - i ™. R EAPAR

————‘

—
R hia atiuias Jena il il "ﬁ?‘ Y .

e 0 21— s Al "‘.’" HE T e 23 gk
Y T XA T P A Tk JEh PR AT A

BN v v At 1 L

b anem c—r = » - A

- 49 -

b i

making
k-1

.4 k (k-1)(k-2)/2 1 -

F | consistency checks at level k. Of cource the expected total number

of consistency checks will be the summation of the expected number
of consistency checks for each level k for k ranging from 1 to N,
the number of units.

The computation of the number of labelings for the forward

it S St

checking algorithm is somewhat more complicated because the algo-

rithm stops checking when a future unit has no labels that are

consistent with the past and present unit-label pairs. A consis-
tent labeling to depth k occurs when the tree search successfully

reaches a given label for unit k and forward checking of that unitc-

E label pgir produces no future unit that has no remaining labels.

4] Thus the consistent labelings to depth k for forward checking meet

exactly the following conditions:

1) 2 ces ukik are consistent unit-label pairs.

U1Fpr Uty

2) There is no future unit « in levels k+l, ..., N for which

there is no label £ so that u,f is consistent with

ulﬁl, ey uklk.

The k unit~label pairs are consistent with probability pk(k_l)/z,
and there are Mk possible labelings to depth k (condition 1). A
.} future unit-label pair is consistent with the k past and present
unit~label pairs with probability pk and there are M possible
labels for a future unit, so the probability that a future unit

has no label that is consistent with the k past and present units

is (1 - pk)M. Since there are N units, there are N-k future units,

.
Paa TN T T N T LT P BA o LR AT
Vgl v . 5 - .A"“}'V‘ <~ 1&,‘ v

FTUPRTTY, P PUNBERCTURIN LGP €9, oy e 7 0 (SIS Lomarn o

»
R

and the probability that all of these has at least one label that

. k M.N-k ,
is consistent is (1 - (1-p)] (condition 2). Thus the expected
number of consistent labelings to depth k for forward checking is

e pk(k—l)/z _pK M Nk

1 -1
The expression for the expected number of nodes in the forward

checking tree search at level k is very similar to that for the

number of consistent labelings to depth k, since each node will

perform forward checks to determine if its label will become a
consistent labeling. The labels for a node must meet condition 1
above, but the future units are required to have succeeded with at
least one label only for checks with the unit label pairs

ulll, ceey uk-lzk—l’ since each node was in the table for a consis-

tent labeling to depth k-1, and if any future unit as seen from

level k-1 failed to+have a label then it would not have spawned
nodes at the next level. Thus in each node the future units will
have at least one label and the second condition occurs with
probability [1 - (l-pk-l)M]N-k. Thus the expected number of nodes

at depth k in forward checking is

Mk pk(k—l)/Z _ k-1 M N-k.

(1-@0-p 1
A slight overapproximation for the expected number of consis-

tency checks at depth k in the tree search can be found by multiplying

the expected number of nodes at the depth times the expected number
of labels remaining for each future unit times the number of future units,

N-t. Since each future unit will have at least one label, this
k-1

Mp
1 - (1-pF M

expected number of labels will be Thus the expected

T I v T WYy 7 TN T T RN RN [e) P ey

- 5] -

number of consistency checks in forward checking will be

+ + - - N-K-
Mk 1 p(k 2)(k-1)/2 [1 - (l-pk l)M]V k-1 (=k) .
The exact expected value can be obtained by replacing the number

of future units term, (N-k), with the expected number of future

e e s m— ooti—

units tested, since forward checking will stop testing as soon as
4 a future unit is discovered to have no possible labels. Each of
these tests of a future unit will succeed with probability

i 1 - (1-pk)M, and reasoning similar to that for the number of

? consistency checks at each node in backtracking will give !
1
| k M. N-k
‘ 1-{- él—p)) for the expected number of future units
(1-p)"

tested. Thus the expected number of consistency checks at level k

PRI AN

in forward checking will be
k-1.M N-k-l.l-[l—(l-pk)M]N_k .

it (D) Gem1)/2) g kL) My kM
‘ (1-p)

The number of table lookups in forward checking is the sum of

the number of consistency checks and the number of nodes. Thus the

expected number of table lookups at depth k in the teee search will

be
uw k=1 1 (1o k M. N-k
Mkpk(k-l)/z[l_(l_pk-l)M]N-k[l + M pk-l - - 1-[1-(1 pk)M]].
] -(1-p) (1-p)

The expected number of bit vector operations with the bit
parallel data structure in forward checking can easily be found, bv
removing the term for the number of labels remaining for each future

unit from the expression for the number of consistency tests, since

only one operation will be performed for each unit, giving

 EROE AT U TR e > 1 . 1 1V Ny
" — T T - . + At Pk 4 VT
ST R ¢ T iy - o YT, RGN | s T B e v gy 0 CS SO O b g . Niigt Y ¥

k-1,M.N=-k 1—[1-(1-pk)MlN-K
(1-(1-p~)7} KM

(1-p)

Mk pk(k-l)/Z

for the expected number of bit vector operations at level k in
bit parallel forward checking.
The number of table lookups in bit vectors is still the sum of

the number of bit vector operations and the number of nodes, for

k-LMN-k o 1-[1-(1-p M NE

u pk(k—l)/z (1-(1-p5" 1) (1 L ,
(1-p)’

table lookups into bit vectors in bit parallel forward checking.

To illustrate the general form of the expressions we computed
for the expected number of consistency checks and expected number
of solutions, we present a few graphs. Figure 25 illustrates the
graph of the expected number of consistency checks as a function
of tree depth for a random constraint satisfacgion problem having
N = 17 units and labels and a probability p = 0.70 of a constraint
being satisfied. Notice that the greater number of tests forward
checking does early in the tree search pays off later in the tree
search both in terms of number of consistency tests and in number
of successful instantiations at each tree depth (figure 26).

Figure 27 illustrates the expected number of solutions as a
function of N and p parameters of a random constraint satisfaction
problem. Increasing N for a fixed p eventually causes fewer
solutions to exist because the number of constraints is increasing
quadratically.

We, of course, expect the number of consistency tests to increase

as N increases and p remains fixed since the search space is becoming

R RUOY GUSEITRPERE 4 = P - ¢ T SO
T < wpe 1 e o Y T, SV GUORENE TN | Graee vt B w8 o it . - MY g it Y L R g - ew

large very rapidly. This is shown for the forward checking procedure
in figure 28. Also expected is for the average number of consistency
checks per labeling to increase as N increases and p remains

fixed (figure 29). As N increases, the problem of finding the

first solution as well as all solutions is becoming more and more
difficult. Therefore, it is not expected for the number of consis- i
tency tests per solution to decrease as the number of solutions

increases. The reason for this is that as the number of solutions

increases more of the tests required to verify a solution become
shared because the solutions have common segments. This is illus-
trated in figure 30.

An experimental check of the theoretical equations for the i
number of soluticns and Pumber of solutions at a given depth in §

1

the tree search with random relations is given in figures 31 and 32. ¥
Although the average number of solutions is close to the theoretical g
result, the individual relations vary widely. The I bars mark a ;
distance of one standard deviation of the mean above and below the
average of the trials.

Figure 33 demonstrates the accuracy of the theoretical expres-

sion for the expected number of consistency tests with random
relations in the forward checking algorithm. The total expected
number of consistency tests shown is calculated from the sum of

s the expected number of tests for each level in the various problem
sizes. For this expression to be correct, the expression for the
expected number of nodes at each level in the forward checking

algorithm must also be correct.

m
- 5 -
T v 1
. /‘/'-\ J
0+ / \
: ‘q !
\ .
/ | BACKTRACKING
] \ i
ol /’\ \]
/./ \ \\ 2
/e B\ . ;
' \ A
" Y i t
. Os" , .\ . - ¥
=) \ | ¥
& \ \ A
3 3 * \ \
} 2 b \. ;
;: ﬁ L i | l £
i 9197 | . | :
! R \ -\ :
> ¢ \ ‘ ;
= / . '
m N \
A y] ;
3 103?— \ i
(=] y [] i
'3 /“ .
x : '
X . .
3 :
2 FORWARD .
LY SHEXING i
3 ‘ .
- =t
- .
= 3
4 & i
»
10

2 . 3 3 ‘0 ‘2 & '8 ‘3
JEPTH N TREE SEARCH

Figure 25 illustrates the number of consistency tests as a
function of tree depth for an ¥ = 17, p = 0.70
random constraint satisfaction problem.

.
£

T e r——— .

Rfatess - seuntadie o g e
. ;‘", . gl LA ""'\- Il __(-‘:}’,‘ - e b ! Nl

R AT, W NN L e 18t (e, s o 8

- 55 -

:Q°
/ N
y N BACKTRACKING
’.05 - / ¢ -
/
b ®
/ .
/ (-\\ \
- o ° .
: 10‘\- L 2 . . -
& B
=3 /. ® '
4
a /
<
=]
— ° [
T 3L -
z |
g |
2 ‘
- .
= . 4
3. mewas . |
N éta STRWARD -
“ SHEZKING ;
2 . |
a }
s | |
s ¢ a . |
£]
=
s o ‘
2 ‘ |
=)
< i
: o
L“ .
- 1
N L |
2 A 5 3) 2 A 1§ -

¢
JERPTH 'N TREZ STARCH

Figure 26 illustrates the number of consistent labelings as
a function of tree depth for an ¥ = 17, p = 0.70
random constraint satisfaction problem.

R s T e Ll St T T T S e P y

PR

3
=
!
3
<
-
[
<
o]
Ld
A
;)
2]
=
3
4
=
put
=
§
-
—
=
v
=
=
=
-
B3
-

Figure 27 illustrates the expected number of solutions as :the
N and p parameters change f[or a random constraint
satisfaction problem.

oy 5 oy v e S ¢ T IPYIN YT TV RGEATINIIN Gre £ 9 prrert 2w ¢

- 57 =

A3k T g B el b A s v A gl L T
-
(o]
~

FORWARD CHECKING

o
w

—
(]
~
pey
-
1

EXPECTED NUMBER OF CONSISTENCY TESTS

] 4
1 10- ") N
i ¢ 5 s 7 3 3 W 12 13w 18

H N

i

i

2 Figure 28 shows how the number of consistency tests increases

! as N increases, and p is held constant.

| i -~ 58 -
"
i
1
t
§ 0
] ‘05 FORWARD CHECTKING P: 68
. r » -
’ /
P=53 //
< P:.S.O] ;
Hokd 8 ; . [-
I / ; /,/
2 F /
.; /, (/ /l ‘
. E /‘ ’/ //‘ z
- 4 -
3 = 10" pei7 % » -
! 5_“ J ’ i
¥ o e R ;
: 255 . ‘
| 9 , ' / }
¥ o LA A
o =} / ,/ , v /
p’ s .03 / /,’ ,/ / i
: i . "
. =] A /
12} d" ; / » s
g S // /‘ 4 -
g / ’ » / / 7 :
. / s s / :
5 SS e | :
z1cdh LAy 4 [
o //l' / / i
g 7 l
2 '// R} ! '
z v |]
! s | / | ;
{ :’- 7 l B
+ 0 - i
P4 !
} ’. o 3 6 7 3 3 0 ki 2 3 - 'S
: N
: |
% .
{

S
fi e el -

Figure 29 shows how the number cf consistency teszs per sclution
increases as N increases and p is held constawnt, in
forward checking.

-

e v T - T A A T WA T

Y R LIRS

6
(%]

~—p—————c -

L A A e T kA MR A bSOk Eiul

T

TR

¥ Grar ot NN ¢

EXPECTED NUMBER OF CONSISTENCY CHECKS PER LABELING
Qq
[

5

i o] {o3e]
EXPECTEZD NUMBE= OF LAGELINGS

Figure 30 illustrates that as the expected number of

; solutions increases, the expected number of
] consistency checks per soluticn decreases, §
varying probability p and fixed problem size
_ number of units = number of labels, in the

a forward checking algorithm.

-
(o]

T
N =

TR R g,

Wl e

iy 5t

oy

Figure 31

- 60 -

T

100t —J =

sot SR AN -

80r _// b \I <
N 4 A]
S sof /L =N =
Wd ‘ '
2 SO /l \\- -
- ¢ 7
f— .
Z 40or ‘l PO
= ‘ o .
2 .
7] i X
Z 30k Lo+
S -
N ;
3 -
z L v . J
=
z

}O | N) ' 3 ' .

4 5 3 7 8 Q o

N=NUMBER OF UNITS:NUMBER OF LABEL3

shows the expected number of consisteat labelings
for random relations with number of units =
number of labels = N, and consistency check
success probability p = 0.65. Dots represent

the average number of consistent labelings for

25 random relations tested at each problem

size, and the I bars indicate one standard
deviation of the mean above and below the experi-
mental mean.

g
St o o

T T T i e ka1

LY

[

T — R MDY

(S

Formare .. N L. B v S »m

300} \
//// \\
" \

200+

100}

Wof |

s

(V)
(=]
1

NUMBER OF LABELINGS
~N
?
1

- L i + . . .
i 2 3 & 35) 7 3 3 9
DEPTH IN TREE SEARCH

s SR it T rrats An. ke s

: Figure 32 indicates the number of consistent labelings to depth
i k in the tree search for the average of 25 random
: constraint satisfaction problems with probability
of consistency check success of 0.63 and number of
: units = number of labels = 10. The dotted curve is
‘ the theoretical expected number of labelings for
such a problem.

- 62 -

i
!
£
!

1
/I :
-
7/
4 /
w 10% .
= /
= ¥
,/

D=
S /
E ;7
n /
a /
P-4 /
=] .
Q ’/

//
é /
[- I
W o -
=
3 I

. .
)
;
3
.~ ! ! \ | ; i .
© 4 5 6 7 3 9)
Nz NUMBER OF UNITS = NUMBER OF LABELS

Figure 33 shows the expected number of consistency checks for
random relations with number of units = number of
labels = N, and consistency check success probability
p = 0.65. Dots represent the average number of consis-
tency checks for 25 random relaticns tested at each
problem size, and the I bars indicate one standard
deviation of the mean above and below the experimental
mean.

s

ianinalia NN PO Y

TR T TR RTINS 0 T (v 7o e B e e "-, .

- 63 -

V. The Fail First Principle

One of the strategies which helps tree searching for con-
straint satisfaction problems is the fail first or prune early
strategy of the looking ahead and forward checking procedures.
There are other ways that we can apply the general principle of
trying to fail first (and of course remember that fact so that
there are no unnecessarily repeated mistakes). In this section
we discuss two other applications of this strategy. The first
is by optimizing the order in which we do consistency tests. The
fail first principle states that we should first try those tests
in the given set of tests that are most likely to fail since if
they do fail we do not have to do the remainder of the tests in
the set.

The second application is in dynamically choosing the optimal
order in which to process units in each branch of the tree search.
Optimal unit order choosing, even on a local basis, will not only
lower the number of expected consistency tests per problem as
compared with a random ordering, but it also lowers the variance
of this average. For the unit order choice, the fail first prin-
ciple states that the next unit to choose should be that one

with the fewest possible labels left.

V.1l Optimizing the Consistency Check Order in Tree Searching

Suppose we are solving a constraint satisfaction problem and

suppose units 1,...,¥ have already been assigned labels 51""’£x

“‘F"J‘F’""A'ﬁ'lﬂ' T

LR s e

e WA

v m—

- 64 =
and we are trying to find a label £K+ for unit K+1. The label

1

£K+l must come from some set SK+l of labels and it must be con-

sistent with each of the previous labels Zl,...,ZK, that is, we

must have (k,ﬂk,K+l,Z) e R for k =1,...,K. To determine the

K+1

label £K+1’ we sequentially go through all the labels in SK+1

and perform the K consistency checks: (k,ﬂk,K+l,£) ¢ R, If f

K+1

one check fails, then we try the next label in SK+1' If all

checks succeed, then we can continue the depth first search with

the next unit.

e

The optimizing problem for consistency checking is to deter- t

mine an order in which to perform the tests which minimizes the ;
expected number of tests performed. To set up the optimizing ;
problem, we must have some knowledge.about the degree to which a t
ﬁrevious unit's label constrains unit (K+1)'s label. For this i
purpose we let P(k) be the probability that the label Ek for unit ;
k is consistent with some label for unit K+l. We assume that the %

consistency checks are independent events so that the probability
K

of the tests succeeding on units 1 through K is 1T P(k).
k=1

For each order of testing, these probabilities determine the

expected number of tests in the following way. Let kl,...,kK be

a permutation of 1,...,K designating the order in which the con-

sistency checks will be performed. The test (kl,ﬂk JK+1,2) ¢ R

1
will succeed with probability P(kl) and fail with probability

K+1

l-P(k,). If it fails, we incur a cost of one consistency check

and we try the next label. If it succeeds, we will have incurred

- 65 -

a cost of one consistency check and we are committed to try the

next test (k,,f ,K+1,2
2 kz

ability P(kz) and fails with probability 1-P(k,). At this point,

K+l) € R. This test succeeds with prob-
we have incurred a cost of two tests and may be committed to make
more tests if this one succeeded.

Figure 34 shows the tree of K+l possible outcomes. Since the
tests are assumed independent, the probability for each outcome can
be computed by multiplying probabilities. For example, the prob-
ability of failing on consistency check with unit k3 is
P(kl)P(kz)(l—P(k3)). Also associated with each outcome is the
number of tests performed to get there. For example, failure on

the test with unit k., incurs a cost of 3 tests.

3

The expected number of tests C performed is computed by

K i-1 K
C= J1i[1-P(k)] T P& + K IPk)
i=1 j=1 3 {=1

Upon rearranging and simplifying this expression we obtain

K-1 1

C= 1+) I P(K,)

i=1 j=1
Now by the proposition at the end of section V, this is minimized
by having kl,...,kK be any permutation of 1,...,K satisfying
P(kl) < P(kz) L oees S P(kK)' Hence, to minimize expected numbers
of tests, we must choose the order so that the tests with units
most likely to fail are done first.

To illustrate the advantage of using optimum consistency test

order, we consider the 10-queens problem when the units are natur-

ally ordered from 1 to N and the current unit is K, then the fail

g > Patnc. §

- 66 =
first principle states that tests with past units must be done in
the order of decreasing constraints. Since the row previous to
row k has the strongest constraint on row k, the test order should
be first unit K-1, then K-~2, up to unit 1, in the N-queens problem.
Backtracking requires 1,297,488 tests when done in the wrong order
(unit 1, 2, ..., K-1) and 1,091,856 tests when done in the right
order. It is interesting to note that Gaschnig's backjumping
procedure (Gaschnig, 1978) when done with the consistency tests in ¥

the wrong order (1,131,942 tests) performs worse than standard

backtracking with consistency tests in the right order. Further-
more, for the N-queens problem backjumping with consistency tests
in the right order for the N~queens problem is equivalent to stan-
dard backtracking with consistency tests in the right order because
backjumping bactracks to the highest level at which a fa?lure ié
detected, and there is always at least one lable at a given level

which fails when checked with the immediately preceding level.

B i e T

A e TR o S T .

P(kl)

Succeed

P(kz)

Succeed

P(k3)

Succeed

Succeed 6_

P(kK)

Succeed

- 67 -

1 - P(kl)

Fail

1 - P(kz)

Fail
2 tests
- P(k
1 (3)
Fail
1- P(kK)
Fail

)

Figure 34 {illustrates the K+l outcomes of K tests.

K tests

- 68 -

V.2 Optimizing Tree Search Order

Every tree search must assume some order for the units to be
searched in. The order may be uniform throught the tree or may
vary from branch to branch. It is clear from experimental results
that changing the search order can influence the average efficiency
of the search. In this section we adopt the efficiency criterion of
branch depth and we show how by always choosing the next unit
having smallest number of label choices we can minimize the expecrted
branch depth.

Suppose units 1,...,N are units which are yet to be assigned
labels. Let n(m) be the number of possible or available labels for
unit m. We assume that each of the n(m) Iabels possible for unit m
has the same probability g of succeeding and that success or failure
of one of th% labels is an independent event from success or failure
for any of the other labels. Thus, the probability that a unit m

n(m)

will not have any label that succeeds is (1 - q) The prob-

ability that some label for unit m succeeds is, therefore,

n{(m)

P(m) =1- (1 -q) Unfortunately, this analysis holds only

for the first level of the tree.

Let kl,...,kN be the order in which the units are searched on

the tree. Let Pn(kn[kl,...,kn_l) be the conditional probability

, , R . h
that some label for unit kn will succeed when unit kn is the nt

1""’kn-1 are the

first n-1 units searched in the branch. We assume that the prob-

one in the tree search order given that units k

ability of a label for unit kn succeeding depends only on the number

P) L] LR et el BT AN

R e

> add bl vt T
b 0 - e EE e TR,

of units preceding it in the tree search and not upon which

particular units they are. That is,

Pn(ankl,...,km_l) = Pn(knlel,...,z)

for all labels Zl,...,Z

n-1

n-1" This conditional independence
assumption justifies the use of the notation Pn(kn) to designate

the probability that some label succeeds for unit kn when it is

the nth unit in the tree search, and we will call the probability
that an arbitrary label for unit u will succeed when checked against

annother arbitrary unit-label pair the success probability for unit ' 4

u.

Units which are searched later in the tree typically have

lower probability for a label succeeding since the label must be

consistent with the labels given all the earlier units. We want

some way to compare the probability of success for the same unit

. in different tree searches. Since the success probability «~depends

o g e e e e e -

only on the unit and its level in the tree and since units later in

. TS

the tree have lower success probabilities, we assume that the

success probability for a unit u when it is at level i in one tree

BN

search is related to the success probability of unit u when it is

at the first ievel of another tree search by a constant factor

ai-l where 0 < a < 1:

P o' = B (w).
The best search order is the one which minimizes the expected

length or depth of any branch. When the units are searched in

- -Mw‘lw‘-m’".‘{"WLMﬂ:"‘ [EOT

F)
SR

i)
‘ - 70 - *

i the order kl,...,k , the expected branch depth is given by
i m

: N-1 n
3 1L+ 7 TP (k).
3 n=l j=1 3 J

By the proposition at the end of section V, this is minimized
when the unit chosen at each level is that unit whose success prob-
| ability is smallest. Thus at level j we choose unit kj, where

P.(k,) <P, (u for u # k. ,...,k. ..
] J)=J() 1 j-1

A Now, Pj(kj) = aj-l[l - (1 - qn(kj))]. Since 0 < q £ 1, this
! expression is minimized by choosing kj to be that unit having the
smallest number of possible labels.
To illustrate the advantage of using a locally optimal unit
order for each branch in the tree search, we consider the improv-
ment achieved on the N-queens problem and random relation.problems. -
The number of consistency tests required is given in tables 1 and
2 Some improvement is shown in the.larger N~-queens problems, and ?

considerable improvement appears in the larger random relation

gy
2

problems. Figure 35 demonstrates that the improvement increases
with problem size in the random relation problems with p=0.65 and

number of units = number of labels = N.

s}

The reason why optimal unit order usually improves forward
checking more than backmarking is that forward checking has more

information about future units than backmarking. Therefore,

o LY

forward checking's choice of the next unit most likely to fail is

Py

.

more likely to produce a unit which fails than backmarking's ;

X choice.

a5 -

i~

' T ST T I ITTIT T TR LA 3
B R Ry - TR T, T VUM VNN G 1 P e v 0 PR T TR .-(I.‘ TR ‘W ;:" it) P o

- 71 -

Table 1 Number of Consistency Tests in N-queens
Problem for Normal and Optimal Unit Order

N Bascktracking Backchecking Full Looking Part Looking Backmarking Forwvard
Ahead Ahead Checking
Normal Normal Normal Opcimal Normal Optimal Normal Opcimal Normal Opcimal
3 86 80 99 99 97 97 76 76 76 76
5 405 356 598 578 485 431 276 276 282 282
6 2016 1496 209% 2082 1703 1708 944 921 964 346
7 9297 6062 8942 8941 5511 5318 3236 3168 3338 322 .
8 46752 27450 35323 35211 25882 25062 12308 12095 13024 12108 1
9 243009 131538 153485 151275 112327 106247 50866 50027 55326 49856 F
10 1297558 643658 661017 536377 496455 449666 220052 211635 242174 205970

Table 2 Number of Comnsistency Tests in Average of 3 Random Constraint
Satisfaction Problems with Consistency Check Success Probability .
0.65, for Normal and Optimal Unic Order "

. !

N = number of units = aumber of labels

N Backtracking Backchecking Full Looking Part Looking Backmarking Forward i

Ahead Ahead Checking ‘z

Normal Normal Normal Optimal Normal Opcimai Normal Optcimal Normal Optimai ’]

4 2643 193 230 223 184 174 132 133 133 P :!

5 1043 7 760 712 599 554 425 182) 35% i

6 4637 2514 2543 2288 1966 1700 1298 1159 1273 979 g

7 12040 6722 5722 5156 4697 3873 3173 2486 3057 2069 f

8 25893 13490 10779 9306 3111 7233 5089 4300 5978 3428 ¥
3 118086 55318 30799 25904 26788 19174 21170 10246 18616 2673
10 163983 73260 44655 316675 41232 28872 28316 14892 15288 12022

. - 72 -
-
£
|
-
|
.= T 11 RIS)4 T R
2 BACKMARKING
: /FORWARD CHECKING
1 / BACKMARK ING OPTIMAL
3 CRRER
3 , FORWARD CHECKING
' o o OPTIMAL CRDER JI
b
- *)
W
: —
- >
E -3
b | v
- —
| - 0 1% -
3 2 |
Z !
3 z !
3 (&)
q : |
S |
@ |
: |
i
|
; !
\ |
! !
| § 7 8 3 HY 1 12 he] 3
N = NUMBER OF UNITS:NUMBERCF LABELS
1
]
¥
?
1; Figure 35 shows the improvement in eificiency for the average
. of 5 random relation problems with probability p=0.63
and number of units = number of labels = N, when
: locally optimized unit order is used. The relations
! are the same as those shown in figures 9 and 10.

—

S e A T T iy

- 73 -

Proposition: Let O<as<l be given. For each unit u let P(u) be

its initial success probability. Let kl""’kV be any permutation

of 1,...,N satisfying P(kl)<P(k2)<...<P(kV). Define

Pn(u) = an-lP(u). Then,

N-1

!

n=1 j

N-1 n
P, (k,) z T P,(u.,) for any permutation u
13 n=l j=1

it~

.5u

[e=gg=

Ok
of 1,...,N.

N

Proof: Let u,,...,u

1 N be any permutation of 1,...,N minimizing

N-1 n

z R P.(u,). 1If Upses ool we are done. If Upseesty does not
n=1l j=1

equal kI,...,kN, let m be the smallest index such that um # km.

Also let m' be the index such that u # kn' Also let m' be the

index such that u , = k . Define the permutation i_, ,1. by
m m 1 N
i =u, n#morm'
n n
im = u ,
i,=u -
m m

We will prove a contradiction by showing that

N-1 n N
} I OP.(i) <
n=1 j=1 33 n

1 n
T P,(u,)
1 j=1

W o~10

by looking at the products. There are three cases: n<m, min<m'

and m'<n.

Case 1 n<m: Here since ij = uj, j=1,...,n, we obtain

i R

T P

~ 74 =

Case 2 m<ac<u:

;f n Pm(um) n Pm(um’) n
| 5e1 P,y = [RCIEN P (i) = P o) le.(u,)

k . Since

Now, Pm(um,) = Pm(km) < Pm(u) for any u # kl,..., n-1

uy ¥ kl,...,km_l, Pm(um,) < Pm(um) and
o Pm(um,) n n
T PA) =5—— 1 P (u)< 1 P, (u)
je1 4 37 Plu) j=1 337 5o 1
Case 3 m' < n:
. p
! PP = P“‘Eumzz""ium'; P (i)
. j=l J J m um ml uml le J J .
¥ :
| A
s)] . ‘
:!v _ Pm(lm)Pm,(lm,) . : P o) . f
Pm(um)Pm'(um') j=1 é
) Pm(um.)Pm'(um) : P (a)
Pm(um)me(um,) j=l J 3]
+
Cd '—
b M lP(u ,)am lP(u)
m m’
a1 m'~1 N Pj(uj)
o P(um)u P(um) =1
b n
L) = I P,{(u,)
i s=1 4
: N-1 n N-1 n
; Hence, TP (u)) < E T Pj(u.), contradicting the minimality
] n-1 j=1 n=1 j=1 3 3
/ f Th f =k k
o ul,...,uN. erefore, Uyseeesly = kyyonn, -
-

VI. Conclusion

Using complexity criteria of number of consistency checks and
number of table lookups we have shown analytically and experimentally
the efficacy of the remembering and fail first principles in con-
straint satisfaction tree search problems. A new search procedure
called forward checking has been described and it combined with opti-
mal unit order choice leads to a more efficient tree search than
looking ahead or backmarking. A data structure that takes advantage
of a computer's natural ability to process bit vectors in parallel
can make forward checking even more efficient. This suggests that
the entire set of look ahead operators described by Haralick et. al.
'(1978) Haralick and Shapiro (197%9a, 1979b), the discrete relaxaticn
described by Waltz (1972) and Rosenfeld et. al. (1976) would te more
efficiently implemented by omitting the consistency tests required
by f#ture units against future units. Furgher analvtic and experi-
mental work needs to be done to determine if this in fact is generally
true. Applicability of the forward checking idea to inference and
theorem proving algorithms needs to be tested and this will be the

topic of a future paper.

- -

Sk i

ErweT TS

10.

11.

12,

13,

- 76 -

REFERENCES

Barrow, H. G. and J. M. Tenenbaum, '"MYSIS: A System for
Reasoning about Scenes." Stanford Research Institute, Menlo
Park, CA, SRI AI Tech. Rep. 121, 1976.

T

Gaschnig, J., "A General Backtrack Algorithm that Eliminates
Most Redundant Tests.'" Proceedings of the International Con-
ference on Artificial Intelligence, Cambridge, MA, 1977, p. 457.

Gaschnig, J., "Experimental Case Studies of Backtrack vs.
Waltz-type vs. New Algorithms for Satisficing-Assignment Prob-
lems." Proceedings of the 2nd National Conference of the
Canadian Society for Computational Studies of Intelligence, i
Toronto, Ontario, Canada, July 19-21, 1978. '

Gaschnig, J., Performance Measurement and Analysis of Certain ;
Search Algorithms, thesis, Department of Computer Science, g
Carnegie~Mellon University, May 1979. i

Haralick, R. M., L. S. Davis, A. Rosenfeld, and D. L. Milgram,
"Reduction Operations for Constraint Satisfaction.'" Informa- {
tion Sciences, Vol. 14, 1978, p. 199-219. :

Haralick, R. M., "Scene Analysis: Homomorphisms, and Arrange- T
ments.'" Machine Vision, Hanson and Reisman, Eds., New York:
Academic, 1978.

Haralick, R. and L. Shapiro, '"The Consistent Labeling Problem:
Part I." IEEE Transactions on Pattern Analvsis and Machine
Intelligence, Vol. 1, No. 2, April 1979.

Haralick, R. and L. Shapiro, "The Consistent Labeling Problem:
Part II." IEEE Transactions on Pattern Analysis and Machine

Intelligence.

Harary, F., Graph Theory, Reading, MA: Addison-Wesley, 1969.

Kowalski, R., "A Proof Procedure Using Connection Graphs."
J. Agg. Comput. Mach., Vol. 22, p. 572-595, Oct. 1975.

Mackworth, A. K. '"Consistency in Networks of Relations.”
Artificial Intelligence, Vol. 8, No. 1, 1977, p. 99-118.

McGregor, J. J., '"Relational Consistency Algorithms and their
Applications in Finding Subgraph and Graph Isomorphisms."
Information Sciences, Vol. 18, 1979.

Montanari, V., '"Networks of Constraints: Fundamental Proper-
ties and Applications to Picture Processing.” Information
Sciences, Vol. 7, 1976, p. 95-132.

‘ ~ *
- 77 -
'4

14, Rosenfeld, A., R. Hummel, and S. Zucker, "Scene Labeling by
Relaxation Operations.'" IEEE Transactions on Systems, Man
and Cybernetics, SMC-6, 1976, p. 420-433.

15. Waltz, D. L., "Generating Semantic Descriptions from Drawings
of Scenes with Shadows.'" Report MAC AI-TR-271 MIT, Cambridge,
Massachusetts, 1972.

4 16. Ullman, J. R., "Associating Parts of Patterns." Information

and Control, Vol. 9, No. 6, December 1966, p. 583-601.

3

e 1

' 1

BVERIEE 1 NRREYT

*

ARV o e 2 TP L TR ANPIE LA re am @

